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University of California, Berkeley
Physics 105 Fall 2000 Section 2 (Strovink)

SOLUTION TO PRACTICE FINAL EXAMINATION

Directions. Do all six problems (weights are indicated). This is a closed-book closed-note exam
except for two 81

2 × 11 inch sheets containing any information you wish on both sides. You are free
to approach the proctor to ask questions – but he will not give hints and will be obliged to write
your question and its answer on the board. Roots, circular functions, etc., may be left unevaluated
if you do not know them. Use a bluebook. Do not use scratch paper – otherwise you risk losing part
credit. Cross out rather than erase any work that you wish the grader to ignore. Justify what you
do. Box or circle your answer.

1. (30 points)
A mass m is connected to a wall by a spring of
constant k. Define ω0 ≡ √

k/m. There is no
damping force.
(a) (20 points)
In addition to the spring force, the mass is sub-
jected to an external force Fext:

Fext = 0, t < 0
= F0 sin 2ω0t, 0 < t < 2π/ω0

= 0, 2π/ω0 < t ,

where F0 and ω0 are constants. Find x(t) for
t > 2π/ω0.
(Hint: A solution to the differential equation

( d2

dt2
+ ω2

0

)
G(t) = δ(t) ,

where δ(t) is a Dirac delta function, and G and
Ġ vanish for t ≤ 0, is

G(t) = 0, t ≤ 0

=
sinω0t

ω0
, t > 0 .)

Solution:
The equation given for G(t) defines it to be a
Green function. Correspondingly, the solution
for x(t) is

x(t) =
∫ t

−∞

Fext(t′)
m

G(t− t′) dt′

x(t > 2π
ω0
) =

∫ 2π
ω0

0

F0

m
sin 2ω0t

′ sinω0(t− t′)
ω0

dt′

=
∫ 2π

ω0

0

F0

m
sin 2ω0t

′ sin ω0t cos ω0t′−sin ω0t′ cos ω0t
ω0

dt′

The integral in the last line splits into two pieces
which are proportional, respectively, to

∫ 2π
ω0

0

sin 2ω0t
′ cosω0t

′ dt′ and

∫ 2π
ω0

0

sin 2ω0t
′ sinω0t

′ dt′ .

The first piece vanishes because sin 2ω0t
′ is odd

and cosω′
t is even with respect to the midpoint

of the interval; the second piece vanishes because
sinmy and sinny are orthogonal functions when
m �= n. Therefore

x
(
t > 2π

ω0

)
= 0 .

(b) (10 points)
As an alternative to applying an external force
Fext, this oscillator could be excited by causing
the spring “constant” k to vary sinusoidally with
time:

k(t) = k0(1 + ε0 cosΩt) ,

where ε0 and Ω are constants. If such a variation
were to occur for a long time, even if ε0 � 1,
certain value(s) of Ω would cause the mass to
oscillate with an amplitude that grows exponen-
tially with time. Can you provide an example of
such a value for Ω? (Here you are asked merely
to recall a result from the reading and classroom
discussion in which you have participated.)
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Solution:
This is the Mathieu equation describing e.g. a
child pumping a swing. Its solution exhibits a
parametric resonance at

Ω = 2ω0 .

2. (20 points)
A mass m is in uniform circular motion at con-
stant radius R about a center of attractive force

F(r) = −Kr̂
r2
,

where K is a positive constant. The mass re-
ceives a slight nudge, causing the radius of its
orbit to acquire a small perturbed component,
so that

r(t) = R(1 + ε cosω′t),

where ε is a constant � 1. Find the angular
frequency ω′ of the perturbation. Justify your
answer either by explicit calculation, or by sim-
ple arguments based on your knowledge of the
orbit.
Solution:
A 1/r2 attractive central force yields an elliptical
bound orbit, with the focus of the ellipse located
at the center of force. Relative to its focus, an
ellipse has one fixed point of maximum radius
and one fixed point of minimum radius. There-
fore the angular frequency with which the radius
varies is the same as the angular frequency ω0 of
the basic orbit. From centrifugal force balance
for the (unperturbed) circular orbit, this is

mv2

R
=

K

R2

v =

√
K

mR

ω0 =
v

R
=

√
K

mR3
.

The same solution can be obtained with more
effort by evaluating the effective spring constant

keff ≡ d2Ueff

dr2

∣∣∣
min

,

where the effective potential Ueff is the sum of
l2/2mr2 and the potential that yields F(r); then

ω =
√
keff/m. As a second alternative, the

method of perturbations may be applied.

3. (35 points)
A square thin metal plate has area b2 and mass
m. A set of body axes is set up with the origin
at the CM of the plate. ẑ is normal to the plate,
while x̂ and ŷ intersect the plate’s corners. At
t = 0 the angular velocity of the plate is

�ω(0) =
ω0√
2
(x̂+ ẑ) .

(a) (15 points)
At t = 0, compute the angular momentum �L(0)
(measured in the body system).
Solution:
First we need to compute the inertia tensor I
of the plate. For the moment, imagine that the
x̂ and ŷ axes pass through the sides rather than
the corners of the plate. Then Ixx and Iyy would
be easy to compute – either would be equal to
1
12mb

2, the moment of inertia of a stick. By
symmetry, x̂ and ŷ would be principal axes, as
is ẑ. Since the (thin) plate is a plane,

Izz = Ixx + Iyy = 1
6mb

2 .

How is the actual situation different, given that
the x̂ and ŷ axes actually pass through the
plate’s corners? Not at all. Still, by symmetry,
x̂ and ŷ are principal axes. The above equation
still requires Ixx and Iyy to have the same value.
Therefore

I = 1
12mb

2


 1 0 0
0 1 0
0 0 2


 .

Finally

�L = I�ω

= 1
12mb

2


 1 0 0
0 1 0
0 0 2


 ω0√

2


 1
0
1




=
mb2ω0

12
√
2
(x̂+ 2ẑ) .
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(b) (15 points)
The motion of the plate is allowed to evolve
freely, without the influence of any external
forces or torques. At what time will �L, as mea-
sured in the body system, be directed within the
ŷ-ẑ plane rather than the x̂-ẑ plane?
Solution:
For ease of notation, define x̂, ŷ, and ẑ to be
the “1”, “2”, and “3”, directions, respectively.
Euler’s equations

I33ω̇3 − (I11 − I22)ω1ω2 = N3

I11ω̇1 − (I22 − I33)ω2ω3 = N1

I22ω̇2 − (I33 − I11)ω3ω1 = N2

become
ω̇3 = 0
ω̇1 = −ω2ω3

ω̇2 = +ω1ω3 .

Therefore ω3 is a constant, and �ω⊥, the compo-
nent of �ω that is ⊥ to ẑ, rotates around ẑ with
angular velocity ω3. So in 1

4 of a period, or

∆t =
π

2ω3
=

π√
2ω0

,

the angular velocity will rotate into the x̂-ẑ
plane. By the results of (a.), so will the angular
momentum.
(c) (5 points)
In the absence of external torques, angular mo-
mentum is conserved. Does this fact conflict
with your answer to part (b.)? Explain.
Solution:
No contradiction is implied. Angular momen-
tum is conserved only in an inertial system,
where Newton’s laws hold. In part (b.) we cal-
culated the evolution of angular momentum in
the body system, which is rotating and therefore
not inertial.

4. (35 points)
(a) (7 points)
A compact disk (“CD”) of mass m and radius b
is suspended from its center by a strictly vertical
wire of torsional constant γ. (Ignore the wire’s
mass and the CD’s hole.) The disk remains hor-
izontal and is free only to twist (with azimuthal

angle ϕ) in the horizontal plane, such that the
potential energy stored in the twisted wire is

U(ψ) = 1
2γϕ

2.

Find the frequency ωa of small oscillations of ϕ.
Solution:
The disk’s moment of inertia is

I =
m

πb2

∫ b

0

r22πr dr = 1
2mb

2

(it can be recalled rather than calculated). The
Lagrangian is

L = 1
4mb

2ϕ̇2 − 1
2γϕ

2 .

The Euler-Lagrange equation yields

1
2mb

2ϕ̈+ γϕ = 0 .

This is the usual equation for simple harmonic
motion with angular frequency

ωa =

√
2γ
mb2

.

(b) (7 points)
The system is now made more complicated by
the addition of a second identical CD, suspended
from the first CD by a second identical torsion
wire. Take ψ to be the azimuthal angle by which
CD #2 is twisted – its full twist, not its twist
relative to CD #1. Thus the net amount by
which wire #2 is twisted is (ψ−ϕ). Using ϕ and
ψ as generalized coordinates, find the 2×2 sym-
metric matrix M such that the kinetic energy T
is given by

T = 1
2 ( ϕ̇ ψ̇ )M

(
ϕ̇
ψ̇

)
.

Solution:
In analogy to the single disk system, the kinetic
energy is

T = 1
4mb

2ϕ̇2 + 1
4mb

2ψ̇2

= 1
4mb

2 ( ϕ̇ ψ̇ )
(
1 0
0 1

) (
ϕ̇
ψ̇

)
.
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Thus

M = 1
2mb

2

(
1 0
0 1

)
.

(c) (7 points)
For the same system, find the 2×2 symmetric
matrix K such that the potential energy U is
given by

U = 1
2 (ϕ ψ )K

(
ϕ
ψ

)
.

Solution:
In analogy to the single disk system, the poten-
tial energy is

U = 1
2γϕ

2 + 1
2γ(ψ − ϕ)2

= 1
2γ(2ϕ

2 + ψ2 − ϕψ − ψϕ)

= 1
2γ (ϕ ψ )

(
2 −1
−1 1

) (
ϕ
ψ

)
.

Thus

K = γ

(
2 −1
−1 1

)
.

(d) (7 points)
Obtain the natural angular frequencies of oscil-
lation of this system.
Solution:
The secular equation for the natural frequencies
ω is

0 = det(K − ω2M)

=
∣∣∣ 2γ
mb2

(
2 −1
−1 1

)
− ω2

(
1 0
0 1

)∣∣∣
≡

∣∣∣ω2
a

(
2 −1
−1 1

)
− ω2

(
1 0
0 1

)∣∣∣ .
Defining η ≡ ω2/ω2

a,

0 = det
(
2− η −1
−1 1− η

)

= 2− 3η + η2 − 1

η = 3
2 ±

√
9
4 − 1

= 3
2 ±

√
5
4

ω2 = 1
2ω

2
a(3±

√
5)

=
γ

mb2
(3±

√
5) .

(e) (7 points)
Describe the motion of the two CDs when the
system has only one normal mode excited (you
may choose any mode you wish). Your descrip-
tion should specify the amplitude of ψ relative
to that of ϕ.
Solution:
The equation that yields the (unnormalized)
eigenvectors is

0 =
(
2− η −1
−1 1− η

) (
ϕ
ψ

)
.

The top line of this pair of equations is

0 = (2− η)ϕ− ψ .

Substituting e.g. η = 1
2 (3 −

√
5) for the slower

mode,

ψ =
1 +

√
5

2
ϕ ,

so the lower CD twists in phase with the upper
CD at ≈ 162% of the upper CD’s amplitude.

5. (40 points)
A spherical top of mass m under the influence
of gravity with one point fixed is described by
the usual Euler angles φ (= azimuth of the top’s
axis about the vertical), θ (= polar angle of the
top’s axis with respect to vertical), and ψ (= az-
imuth of the top about its axis). Gravity pulls
down on the top’s CM, which is a distance h
from the (frictionless) pivot. The top’s kinetic
energy is given by

T = 1
2I(φ̇

2 + θ̇2 + ψ̇2 + 2φ̇ψ̇ cos θ) ,

where I is the top’s moment of inertia about
its symmetry axis, and also its moment of in-
ertia about any axis which is perpendicular to
the symmetry axis and which passes through the
pivot. (The fact that there is only a single mo-
ment of inertia I is the reason that this top is
called “spherical”. Since I is measured about
the pivot, not about the CM, the top itself is
not spherically symmetric.)
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(a) (20 points)
A generalized force of constraint Qφ (actually a
torque about the vertical axis) is applied to the
top so that φ is constrained to be constant. For
the initial conditions θ(0) ≡ θ0 � 1, θ̇(0) = 0,
and ψ̇(0) = ω0, solve for θ(t) in the regime
θ � 1.
Solution:
The Lagrangian for the spherical top is

L = 1
2I(φ̇

2 + θ̇2 + ψ̇2 + 2φ̇ψ̇ cos θ)−mgh cos θ .

The Euler-Lagrange equations are

d

dt

∂L
∂φ̇

=
∂L

∂φ
+Qφ

d

dt

∂L
∂θ̇

=
∂L

∂θ
d

dt

∂L
∂ψ̇

=
∂L

∂ψ
.

Applying these equations to the above La-
grangian,

I(φ̈+ ψ̈ cos θ − ψ̇θ̇ sin θ) = Qφ

Iθ̈ = (mgh− Iφ̇ψ̇) sin θ

I(ψ̈ + φ̈ cos θ − φ̇θ̇ sin θ) = 0 .

Enforcing the constraint φ = constant, so that
φ̇ = φ̈ = 0, these equations simplify to

I(ψ̈ cos θ − ψ̇θ̇ sin θ) = Qφ

Iθ̈ = mgh sin θ

Iψ̈ = 0 .

Only the second Euler-Lagrange equation is
needed to solve this part of the problem. Ap-
proximating sin θ ≈ θ,

Iθ̈ = mghθ

θ = θ0 cosh
√

mgh
I t .

This is the familiar result for a falling stick; it is
the same result as would be obtained if the top
were not spinning at all.
(b) (20 points)
For the conditions of (a.), find the generalized

force of constraint Qφ(t) which must be exerted
upon the top to keep φ = constant.
Solution:
From the third Euler-Lagrange equation, ψ̈ van-
ishes, so ψ̇ = ω0 for all time. The first Euler-
Lagrange equation simplifies to

−Iω0θ̇ sin θ = Qφ

−Iω0θ̇θ ≈ Qφ ,

where again we have made the small-angle ap-
proximation sin θ ≈ θ. Substituting θ(t) from
part (a.),

Qφ(t) =

= −Iω0θ
2
0

√
mgh

I sinh
(√

mgh
I t

)
cosh

(√
mgh

I t
)

= − 1
2Iω0θ

2
0

√
mgh

I sinh
(
2
√

mgh
I t

)
.

6. (40 points)
Consider a long narrow rectangular membrane
which, in equilibrium, lies in the x-y plane; x̂
is its long direction and ŷ is its short direction.
The membrane’s displacement normal to the x-y
plane is denoted by z(x, y, t). The membrane is
clamped at its long edges y = 0 and y = b, so
that

z(x, 0, t) = z(x, b, t) = 0 .

We wish to investigate the propagation of trav-
eling sinusoidal waves z(x, y, t) in the long direc-
tion x̂.
(a) (6 points)
The Lagrangian density L′ (per unit area of
membrane) is given by

L′(z, ∂z
∂x ,

∂z
∂y ,

∂z
∂t , x, y, t) =

= 1
2σ

(
∂z
∂t

)2 − 1
2β

((
∂z
∂x

)2 +
(

∂z
∂y

)2
)
,

where σ is the membrane’s mass per unit area,
and β is a positive constant that is inversely
proportional to its elasticity. Apply the Euler-
Lagange equations to this Lagrangian density
to obtain a partial differential equation for
z(x, y, t).
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Solution:

d

dt

∂L
∂
(

∂z
∂t

) +
d

dx

∂L
∂
(

∂z
∂x

) +
d

dy

∂L
∂
(

∂z
∂y

) =
∂L
∂z

σ
∂2z

∂t2
− β(

∂2z

∂x2
+
∂2z

∂y2
) = 0 .

(b) (6 points)
Search for a trial solution in the form

z(x, y, t) = Y (y) cos (kxx− ωt) ,

where Y (y) is a function only of y, and kx

and ω are constants which for the moment are
unspecified. Plug this solution into the equa-
tion you obtained for (a.). Dividing through
by cos (kxx− ωt), obtain an ordinary differential
equation for Y (y).
Solution:

(−σω2Y + βk2
xY − βY ′′) cos (kxx− ωt) = 0

βY ′′ + Y (σω2 − βk2
x) = 0 .

(c) (6 points)
Applying the boundary conditions z(x, 0, t) =
z(x, b, t) = 0, identify and choose a (non null)
solution for Y (y) which has the most gradual
dependence on y that is possible given these
conditions.
Solution:
The general solution for Y will be a sum
of sin

√
σω2 − βk2

xy and cos
√
σω2 − βk2

xy if
σω2 > βk2

x, or a sum of sinh
√
βk2

x − σω2y and
cosh

√
βk2

x − σω2y if σω2 < βk2
x. However, no

sum of sinh and cosh can vanish at both y = 0
and y = b. Therefore σω2 > βk2

x and we have a
sum of sin and cos. In order to vanish at y = 0
and y = b, the cos part must vanish, and

Y (y) ∝ sin
nπy

b
,

where n is a positive integer. The most gradual
dependence on y occurs when n = 1. Therefore

Y (y) ∝ sin
πy

b
.

(d) (6 points)

Returning to the equation you obtained for (a.),
plug in your answer to (c.) to obtain an equa-
tion relating kx and ω.
Solution:
Adopting the above solution for Y ,

βπ2

b2
= σω2 − βk2

x

ω2 =
β

σ

(
k2

x +
π2

b2

)
.

(e) (6 points)
What is the minimum frequency ωmin of sinu-
soidal waves that can propagate in the x̂ direc-
tion without attenuation?
Solution:
For a sinusoidal wave to propagate in the x̂ di-
rection without attenuation, kx must be real, so
that k2

x > 0. Then from the previous equation

ωmin =
π

b

√
β

σ
.

(f) (5 points)
If ω =

√
2ωmin, calculate the phase velocity with

which sinusoidal waves propagate in the x̂ direc-
tion.
Solution:
If ω =

√
2ωmin, from (d.) k2

x = π2/b2. Then

vphase =
ω

kx

=
√
2(π/b)

√
β/σ

π/b

=

√
2β
σ
.

(g) (5 points)
What is the group velocity of the waves de-
scribed in (e.)?
Solution:

vgroup =
dω

dkx
.

From (d.),

ω dω =
β

σ
kx dkx .
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Therefore
vgroup =

β

σ

kx

ω

=
β

σvphase

=

√
β

2σ
.

Note that the geometric mean of vphase and

vgroup remains equal to
√

β
σ , the “pure” phase ve-

locity of waves traveling on the membrane when
no boundary restrictions are applied. (This prob-
lem is simpler than, but similar to, the problem
of EM wave propagation in a hollow rectangular
waveguide.)


